

Sustainable Street Network Emergency Responder Perspective

Danny Pleasant, AICP Charlotte Dept of Transportation November 7, 2008

Purpose

Demonstrate how a connected street network provides better emergency response while saving tax dollars.

Shared Interests

	Fire Department	Transportation
Disperse traffic	$\overline{\mathbf{X}}$	$\overline{\mathbf{X}}$
Link land uses		
Reduce vehicle-miles of travel (VMT)	$\overline{\mathbf{X}}$	
Alternate routes & Access		
Safe streets		
Improved response		$\overline{\mathbf{X}}$

- 1 fire company arrives in 6 minutes or less, 80% of time
- 3 fire companies arrives in 9 minutes or less, 80% of time

2 minutes call and dispatch 4 or 7 minutes travel time

Financial Aspects of Building and Operating a Fire Station

Non-inflated Annual Cost for 1 Fire Station with 1 Apparatus

Non-inflated Annual Cost for 1 Fire Station with 2 Apparatus

Distribution of Costs

- Costs to operate a fire station generally are fixed
- Costs are independent of...
 - Service area
 - Number of properties served per station
- More efficient for taxpayers when...
 - Service area per station is maximized
 - Number of properties served is maximized
- Fire station costs are mostly operating costs

Comparison of 8 Fire Stations in Charlotte

Fire Stations Studied

• 8 fire stations

- Areas all generally built-out
 - Land generally developed
 - Street network generally complete
- Distance from Center City generally correlates negatively with connectivity

Service Area Size (Based on 2¹/₂-mile travel distance)

Definition

Connectivity Ratio (CR) or *Connectivity Index (CI)*

A quantitative measure of connectivity in a given area, equal to:

Number of street segments Number of Intersections + Cul-de-sacs + Dead Ends

Connectivity ratio ranges from 1.00 (one cul-de-sac) to 2.00 (a perfect grid)

Three Connectivity Ratios

• CR = 1.40

• CR = 1.20

• CR = 1.04

Service Area as a Function of Connectivity Ratio

Households per Fire Station

Annualized Per-Capita Life Cycle Costs (based on 2-apparatus station)

OF CHARLOTTE

Average Citywide Response Time and Connectivity Ratio

OF CHARLOTTE

Conclusions

- Degree of connectivity directly affects Fire Station service area size
 - Higher connectivity ratios = larger service areas
- Larger service area distributes fixed costs over more households
- Fire station costs are fixed
- Good connectivity = Financial efficiency

Station 15 / Station 31 Case Study on Connectivity

Or...

Why 300 Feet of Road Can Be Very Important

Fire Station Contexts

• Station 15

- Located at Eastway/Shamrock intersection (E Charlotte)
- Area developed in 1950's 1960's ~ older suburbs
- Connectivity ratio of 1.30
- 2¹/₂-mile response area: 13.4 mi²
- Station 31
 - Located on Ridge Road near Highland Creek (NE Charlotte)
 - Area developed in 1980's 1990's ~ recent suburbs
 - Connectivity ratio of 1.09
 - 2¹/₂-mile response area: 8.0 mi²

Question: *Does increased connectivity increase fire response areas?*

Fire Station Contexts

Access Route for FS 31

FS 31 Service Area Comparison

Without Shelley Ave. Connection

With Shelley Ave. Connection

Conclusions

There is a business case for having better connectivity

- Connectivity CIP projects/Land Development
 - <u>One-time</u> capital cost, plus occasional maintenance
 - \$1 million or less
 - Connectivity through Land Development analogous

• Fire Stations

- Annual operating costs
- One-time capital costs [property, construction]
- Recurring capital costs [equipment]
- Averages \$1.5 \$2.7 million annually (non-inflated)

Thanks To...

• CDOT staff

- Matt Magnasco
- Steven Castongia
- Katie Templeton
- Dan Gallagher

• CFD staff

- Benny Warwick
- Rachel Pillar
- Bridget Hayes
- Deputy Chief Rob Kinniburgh
- Deputy Chief Rich Granger
- Deputy Chief Pete Key

Questions and Comments?

