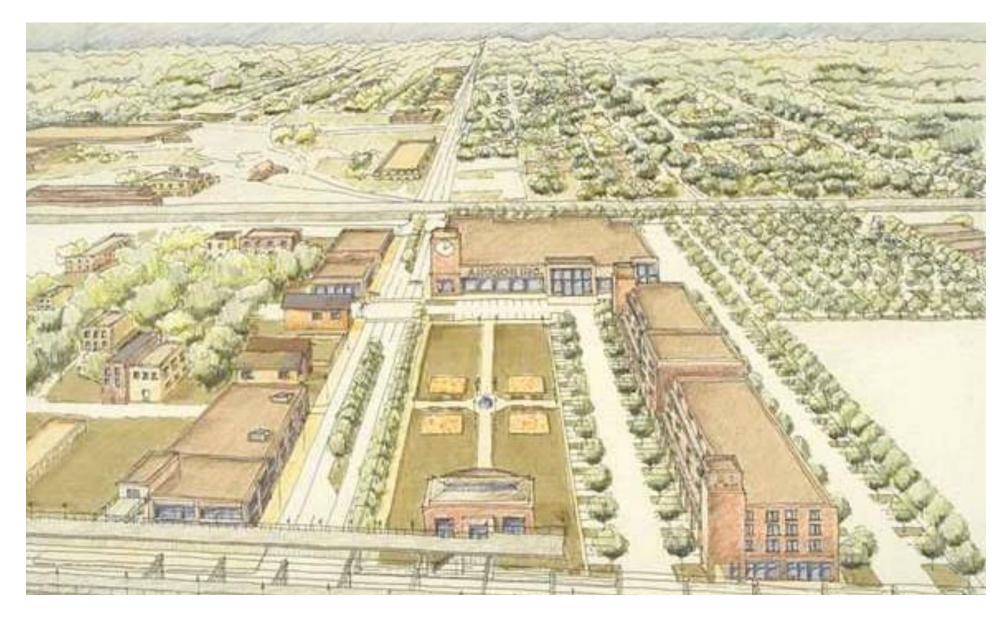
Sustainable Urbanism: Urban Design with Nature

Council on Sustainable Urbanism and Architecture

Alexandria, VA November 28, 2007

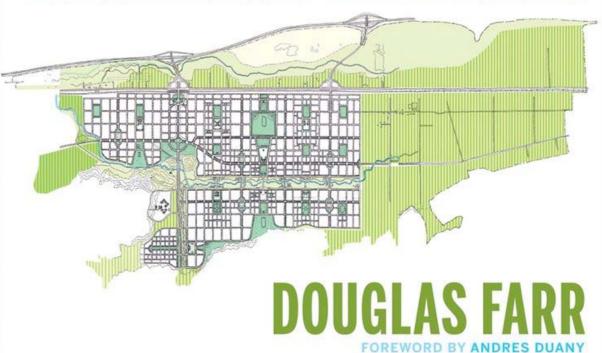


Chicago Center for Green Technology/CCGT

FARR ASSOCIATES

CTA Greenline/Lake-Pulaski TOD (1998)

FARR ASSOCIATES



CTA Greenline/Lake-Pulaski TOD (1999)

FARR ASSOCIATES

SUSTAINABLE URBAN DESIGN WITH NATURE

Sustainable Urbanism: Urban Design with Nature

Publisher: John Wiley and Sons, November 2007

Walkable, transit-served urbanism

integrated with green buildings

and high performance infrastructure

Sustainable Urbanism/Urban Design with Nature

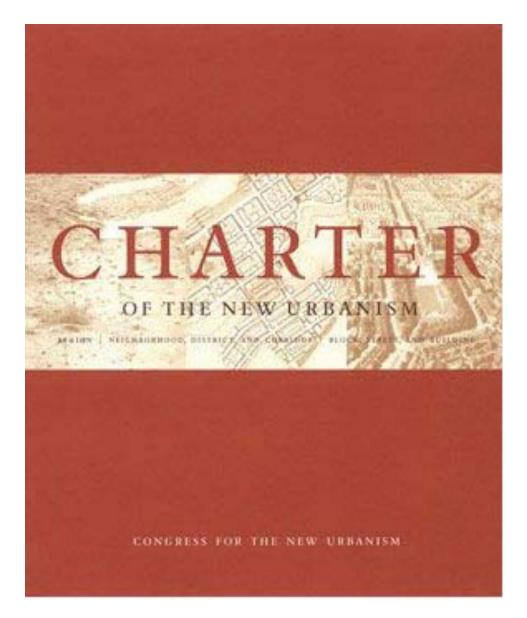
Book Organization

Section 1: Essay on the Imperitive of SU

Section 2: Implementing Sustainable Urbanism

Section 3: Emerging Thresholds of SU

Section 4: Twenty Case Studies of SU


Sustainable Urbanism/Urban Design with Nature

FARR ASSOCIATES

Step One

Establish Weights and Measures

The Congress for the New **Urbanism** views disinvestment in central cities, the spread of placeless sprawl, increasing separation by race and income, environmental deterioration, loss of agricultural lands and wilderness, and the erosion of society's built heritage as one interrelated community-building challenge.

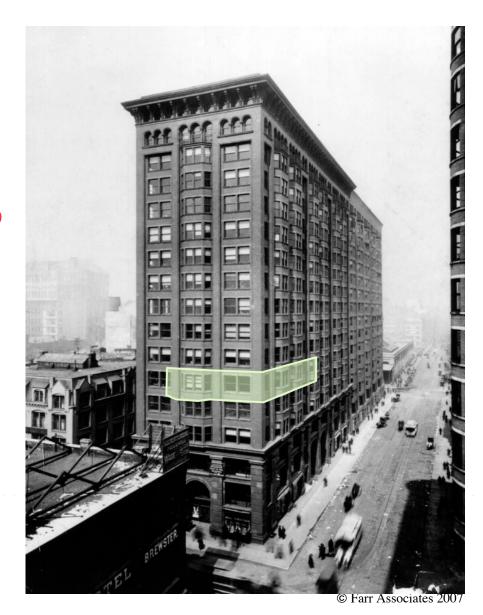
The Congress for the New Urbanism/CNU

FARR ASSOCIATES

Leadership in Energy and Environmental Design® /LEED

FARR ASSOCIATES

Half Measures of Sustainability



A Green Building Critique of Seaside

FARR ASSOCIATES

Location Efficiency LEED-CI Pilot

"The LEED Rating System does not distinguish between the size (or quantity) of mass transit systems in proximity to a project... Awarding extra credit would create an added advantage for projects located in larger metropolitan areas."

An Urbanist Critique of LEED

FARR ASSOCIATES

LEED® for Neighborhood Developments

LEED-ND Critique

Urban waterfront Pre-requisite

Per square foot versus per capita

More and better use of transect

Lack of clarity on ideal urban form

Step Two

Dismantle Carbon-Era Standards

FARR ASSOCIATES

Reversing Regulations

Maximums become minimums

Development density

Building heights

Minimums become maximums

Setbacks

Off street parking

Public lighting

Step Three

Launch a national campaign to adopt Sustainable Urbanism

Sustainable Urbanism/Urban Design with Nature

FARR ASSOCIATES

5 Years 10 Years 25 Years

An Inconvenient Truth

FARR ASSOCIATES

REDUCE YOUR IMPACT WHILE ON THE MOVE

Almost one third of the carbon dioxide produced in the United States comes from our cars, trucks and airplanes. Here are some simple, practical things you can do to reduce the amount of carbon dioxide you produce while on the move.

Reduce the number of miles you drive by walking, biking, carpooling or taking mass transit wherever possible

Avoiding just 10 miles of driving every week would eliminate about 500 pounds of carbon dioxide emissions a year! Click here to find transit options in your area.

Start a carpool with your coworkers or classmates

Sharing a ride with someone just 2 days a week will reduce your carbon dioxide emissions by 1,590 pounds a year. **eRideShare.com** runs a free national service connecting commuters and travelers.

Keep your car tuned up

Regular maintenance helps improve fuel efficiency and reduces emissions. When just 1% of car owners properly maintain their cars, nearly a billion pounds of carbon dioxide are kept out of the atmosphere.

Check your tires weekly to make sure they're properly inflated

Proper inflation can improve gas mileage by more than 3%. Since every gallon of gasoline saved keeps 20 pounds of carbon dioxide out of the atmosphere, every increase in fuel efficiency makes a difference!

When it is time for a new car, choose a more fuel efficient vehicle

You can save 3,000 pounds of carbon dioxide every year if your new car gets only 3 miles per gallon more than your current one. You can get up to 60 miles per gallon with a hybrid! You can find information on fuel efficiency here and here.

Try car sharing

Need a car but don't want to buy one? Community car sharing organizations provide access to a car and your membership fee covers gas, maintenance and insurance. Many companies – such as **Flexcar** – offer low emission or hybrid cars too! Also, see **ZipCar**.

Try telecommuting from home

Telecommuting can help you drastically reduce the number of miles you drive every week. For more information, check out the **Telework Coalition**.

Fly less

Air travel produces large amounts of emissions so reducing how much you fly by even one or two trips a year can reduce your emissions significantly. You can also **offset** your air travel by investing in renewable energy projects.

An Inconvenient Truth: What to do?

FARR ASSOCIATES

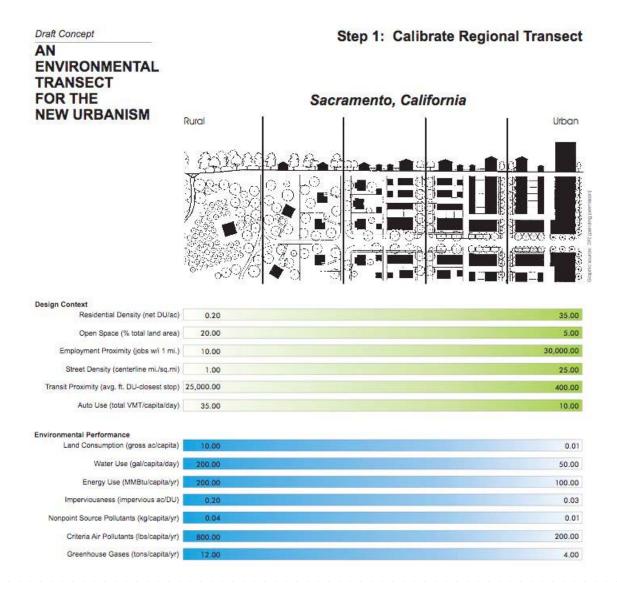
2030 Architecture Challenge

FARR ASSOCIATES

2030 Architecture Challenge

Targets for energy efficiency reduction

60% in 2010


70% in 2015

80% in 2020

90% in 2025

100% in 2030 (Carbon neutral)

Urban (per capita) Sustainability

Comparing Transportation and Operating Energy Use for an Office Building

	U.S. UNITS	METRIC UNITS
Average U.S. commute distance – one way ¹	12.2 mi	19.6 km
U.S. average vehicle fuel economy – 2006 ²	21.0 mi/gal	8.9 km/liter
Work days	235 days/yr	
Annual fuel consumption	273 gal/year	1,030 liters/yr
Annual fuel consumption per automobile commuter ³	33,900 kBtu/yr	9,890 kWh/yr
Transportation energy use per employee 4	27,700 kBtu/yr	8,100 kWh/yr
Average office building occupancy ⁵	230 ft ² /person	21.3 m ² /person
Transportation energy use for average office building	121 kBtu/ft²	381 kWh/m²
Operating energy use for average office building 6	92.9 kBtu/ft²-yr	293 kWh/m²-yr
Operating energy use for code-compliant office building ⁷	51.0 kBtu/ft²-yr	161 kWh/m²-yr
Percent transportation energy use exceeds opera- tion energy use for an average office building	30.2%	
Percent transportation energy use exceeds operation energy use for an office building built to ASHRAE 90.1-2004 code	137%	

^{1.} U.S. Department of Transportation, Transportation Energy Data Book 26th Edition, 2007, Table 8.6

^{3.} Assumes 124,000 Btu/gallon of gasoline, DOE Energy Information Administration data

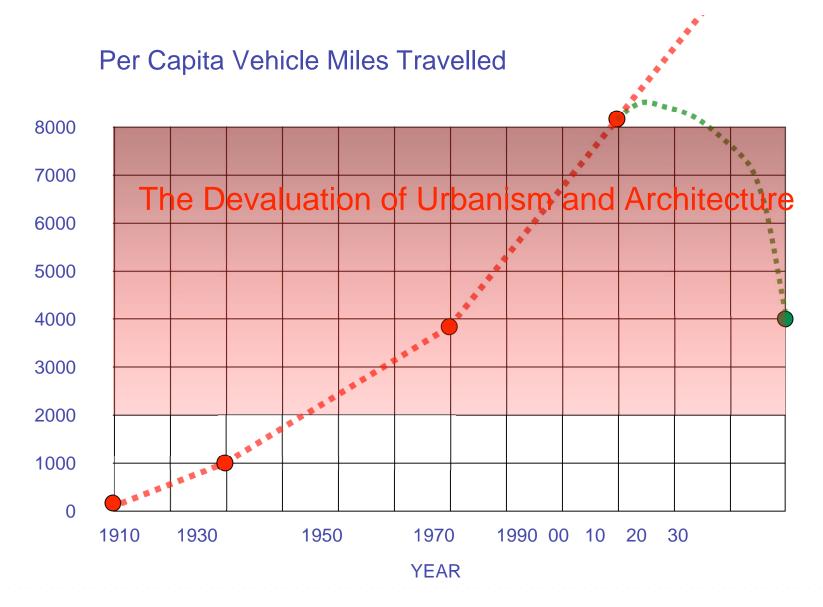
Building v. Transport Energy

FARR ASSOCIATES

^{2.} U.S. EPA Light-Duty Automotive Technology and Fuel Economy Trends: 1975 Through 2006

Per capita VMT will increase 5% w/ > CAFE standards

Average dwelling size grew 60% from 1970 - 2005



The Tragic Irony of Efficiency

FARR ASSOCIATES

The 2030 Community Challenge

2030 Community Challenge

FARR ASSOCIATES

Target: 2% VMT reduction per year

The vehicle miles traveled within a given jurisdiction shall be decreased to:

90% in 2010

80% in 2015

70% in 2020

60% in 2025

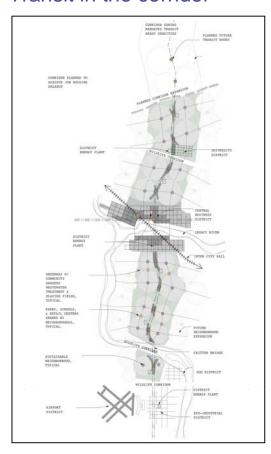
50% in 2030

2030 Architecture Challenge

FARR ASSOCIATES

Step Three - A


The commoditization of Sustainable Urbanism


Urbanist Strategy:

Transport/land use integration

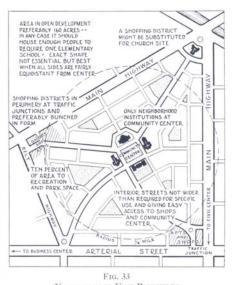
Walking in the neighborhood

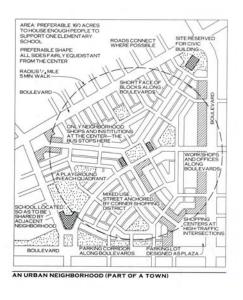
Transit in the corridor

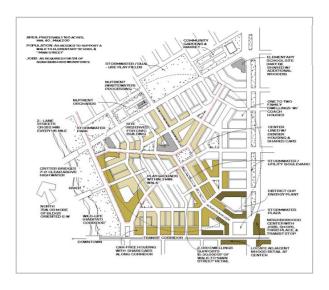
	Residential (1)	Non-Residential	
Physical Measures			
Net Residential Density	Up to 55%	N/A	
Mix of Uses	Up to 9%	Up to 9%	
Local-Serving Retail	2%	2%	
Transit Service	Up to 15%	Up to 15%	
Pedestrian/Bicycle Friendliness	Up to 9%	Up to 9%	
Physical Measures subtotal	Up to 90%	Up to 35%	
Demand Management and Similar Measures			
Affordable Housing	Up to 4%	N/A	
Parking Supply (2)	N/A	No limit	
Parking Pricing/Cash Out	N/A	Up to 25%	
Free Transit Passes	25% * reduction for	25% * reduction for transit	
	transit service	service	
Telecommuting (3)	N/A	No limit	
Other TDM Programs	N/A	Up to 2%, plus 10% of the credit	
		for transit and ped/bike	
		friendliness	
Demand Management subtotal (4)	Up to 7.75%	Up to 31.65%	

Notes:

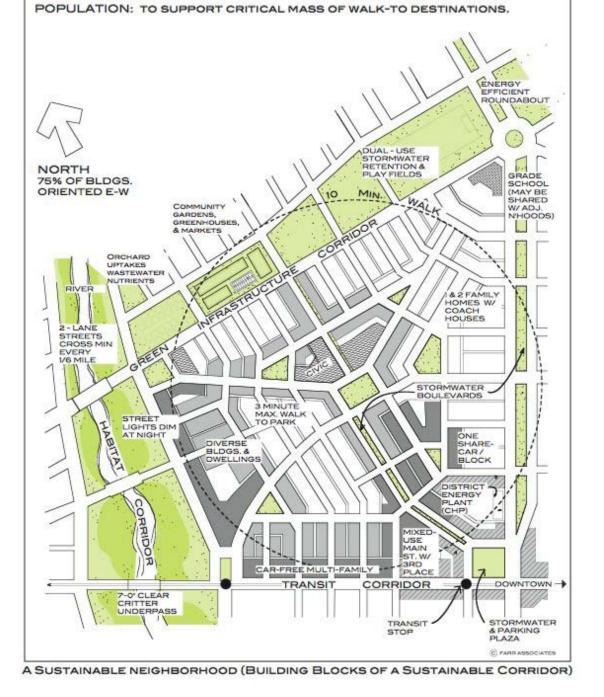
- (1) For residential uses, the percentage reductions shown apply to the ITE average trip generation rate for single-family detached housing. For other residential land use types, some level of these mitigation measures is implicit in ITE average trip generation rates, and the percentage reduction will be lower.
- (2) Only if greater than sum of other trip reduction measures.
- (3) Not additive with other trip reduction measures.
- (4) Excluding credits for parking supply and telecommuting, which have no limit.




Trip Reduction Potential

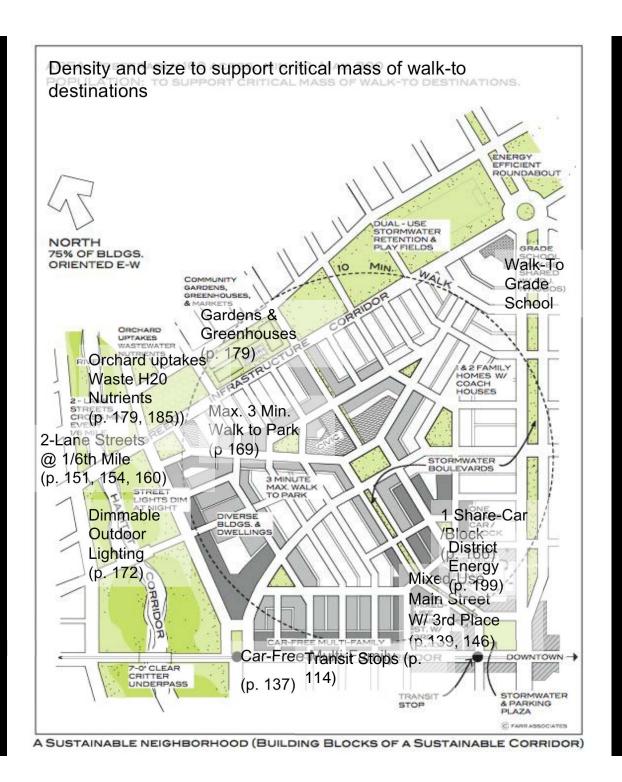

FARR ASSOCIATES

Neighborhood (Pedshed) Timeline

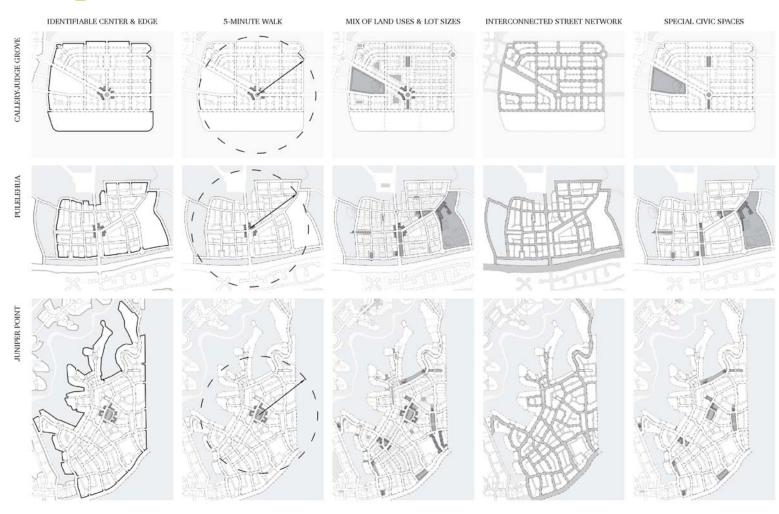

Neighborhood-Unit Principles
Perry

DPZ

Sustainable Neighborhood


The Sustainable Neighborhood

A place designed so well that people willingly meet daily needs using foot and bike (no car)



AREA: PREFERABLY 160 ACRES, MIN. 40, MAX. 200

Neighborhood Definition

Neighborhood Definition

		_		_	17			
Neighborho	od Definition	Size (Acre)	% Area Devoted to Center	Number of Primary Dwellings	Number of Accessory Dwellings	Net Residential Density (DU/Acre) ²	S.F. of Commercial Space	Net Commercia Area (S.F./Acre
Name	Location				L ₂		·	
Historic City of Charleston	Charleston, SC	1,015	9% (88 acres)	5,428 ¹	UNKNOWN*	7.6	UNKNOWN *	UNKNOWN *
Four wards in Historic Savannah ⁵	Savannah, GA	50	9% (4.5 acres)	320 ¹	UNKNOWN *	9.1	180,200 ³	3,604
Seaside (Original 80 Acres)	Seaside, FL	80	5% (4.1 acres)	330 ¹	UNKNOWN *	8.2	153,034 ³	1,912
The North End Neighborhood	Boston, MA	148	7% (10.3 acres)	6,600 ¹	UNKNOWN*	82.6	708,319 ⁶	4,785
Forest Hills Gardens	Queens, NY	142	2.8% (4.1 acres)	800 ¹	UNKNOWN *	7.2	7,500 3	52
Callery Judge Grove	Palm Beach County, FL	89	3% (2.7 acres)	460	350 ⁷	9.96	18,000	390
Pulelehua	Maui, HI	108	6.4% (6.9 acres)	438	101 7	11	62,768	1,586
Juniper Point	Flagstaff, AZ	151	9.5% (14.4 acres)	1739	342 7	20	116,200	1,417
Optimun Range		40-200	3-10%	Min_ Max_		Min_ Max_	X	100-400

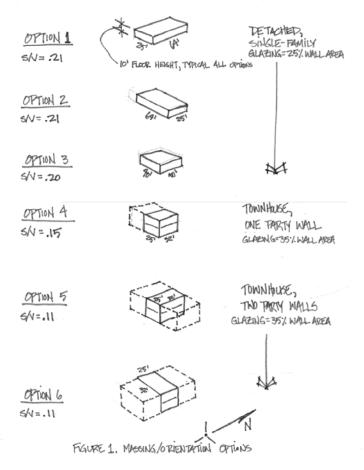
Dover Kohl Associates 2007

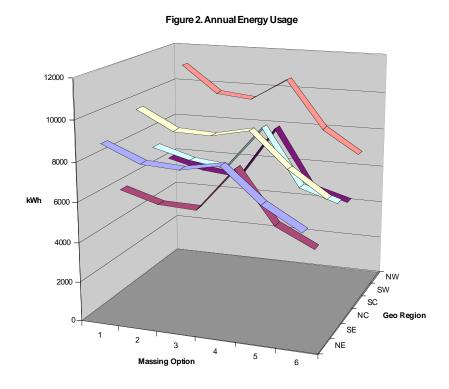
Rooftops (#) to support n'hood retail?

	Gross Retall Area (S.F.)	DATE OF THE PERSON NAMED IN COLUMN 1	TND's Necessary to Support Retall (6 DU/Gross Acre)	Sales (S.F.)	Avg. Annual Rent pr S.F	Avg. Trade Area
Corner Store	1,500-3,000	1,000	1	\$210	\$14-16	1 Neighborhood (5 Minute Walk)
Convenience Center	10,000- 30,000	2,000	2	\$225	\$12-18	1 Mile Radius
Neighhborhood Center	60,000- 80,000	6-8,000	6 to 8	\$245	Highly varied from \$7.25 to \$40.00	1-2 Mile Radius

Gibbs Planning Group 2007

Dwelling Types in New TND's


	Rental Lo Apartme		For-Sale Apartn		For-Sale Ro Townhouses/		For-Sale Sn Detached		For-Sale Mi Detached I		For-Sale Urba Detached	
V	Range:	Average:	Range:	Average:	Range:	Average:	Range:	Average:	Range:	Average:	Range:	Average:
Younger Singles & Couples	20% - 72%	43%	15% to 75%	41%	15% to 75%	33%	3% to 33%	14%	0% to 30%	11%	0% to 31%	11%
Traditional & Non-Traditional Families	18% to 56%	33%	0% to 55%	25%	0% to 62%	37%	30% to 76%	54%	28% to 81%	60%	15% to 84%	55%
Empty Nesters & Retirees	7% to 44%	24%	16% to 62%	34%	0% to 47%	30%	14% to 61%	32%	14% to 67%	29%	11% to 64%	34%
		100%		100%		100%		100%		100%		100%


	Rental Lofts/ Apartments	For-Sale Lofts/ Apartments	For-Sale Rowhouses/ Townhouses/Duplexes	For-Sale Small-Lot Detached Houses	For-Sale Mid-Range Detached Houses	Large-Lot Detached Houses	
Range	15% to 31%	4% to 17%	2% to 16%	5% to 35%	13% to 34%	4% to 30%	Total %
Average	23%	9%	9%	24%	22%	13%	100%

Zimmerman Volk Associates 2007

*Based on 30 market TND market studies (400 to 4500 du)

Massing and Orientation Options

Massing and Orientation Options

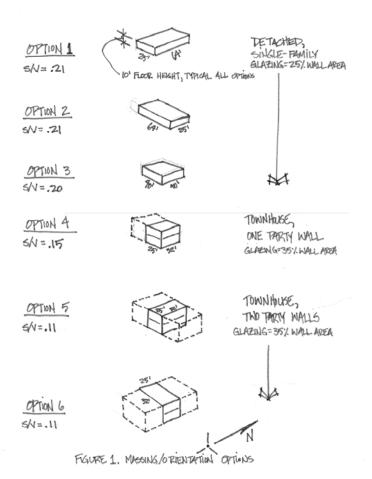
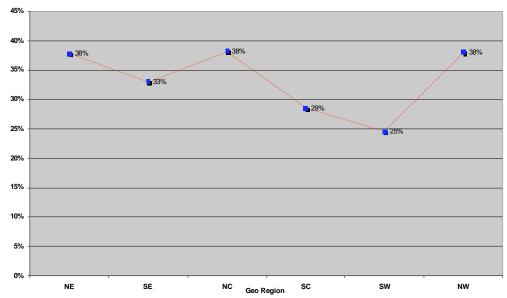
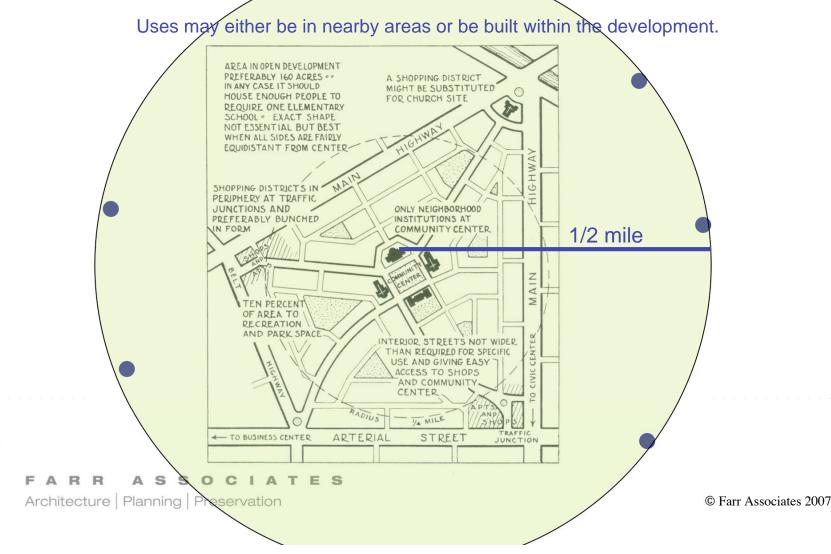
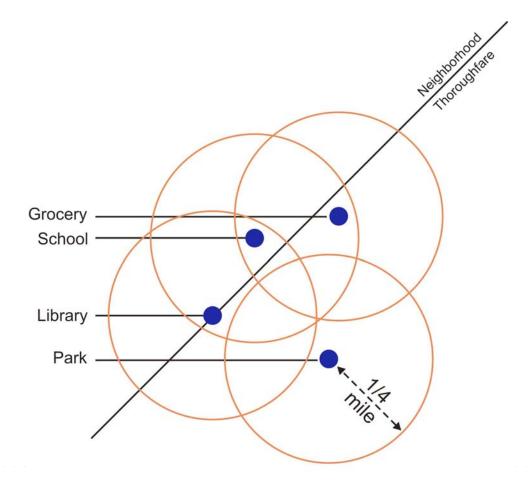



Figure 3.
Percent Reduction of Annual Energy Usage due to Massing, Orientation & Stacking Changes

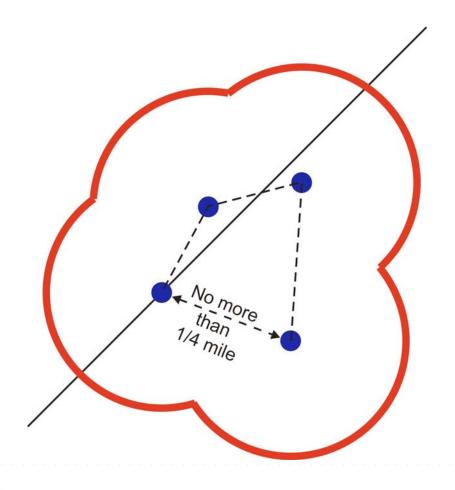


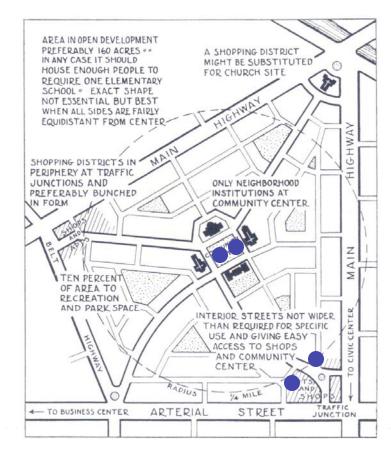
% Energy Reduction from Option 1 to 6



LEED-ND Diversity of Uses

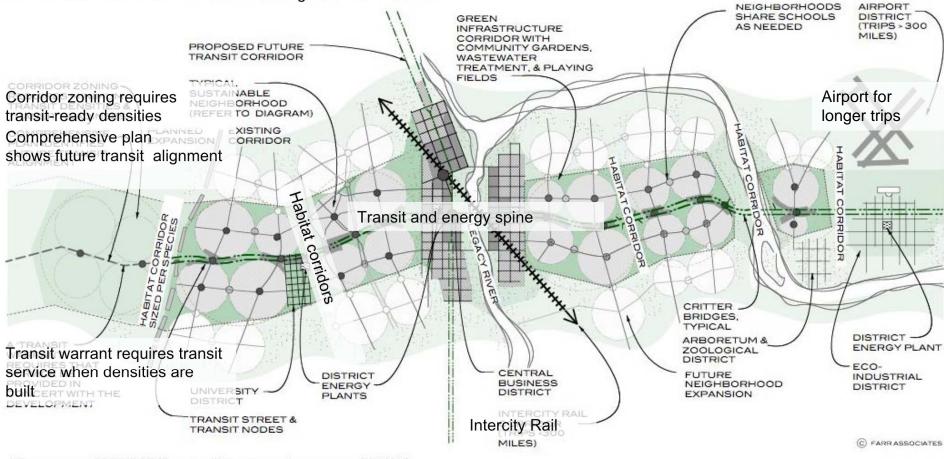
Include a residential component in the project that consitutes at least 25% of the project's total building square footage and design or locate the project such at at least 50% of the dwelling units are within 1/2 mile walk distance of at least two, four, seven or ten uses defined in Appendix A.


Neighborhood Completeness



Criterion Partners 2007

Neighborhood Completeness



Criterion Partners 2007

CORRIDOR DENSITY: Minimum density to free people from automobile dependence

PREFERRED FOR BETTER SERVICE & MODE (15 DU/A TROLLEY) 22 DU/A LIGHT RAIL

CORRIDOR LAND USE MIX 1:1 Jobs-Housing Balance in Corridor

A SUSTAINABLE CORRIDOR (BUILDING BLOCKS OF A SUSTAINABLE REGION)

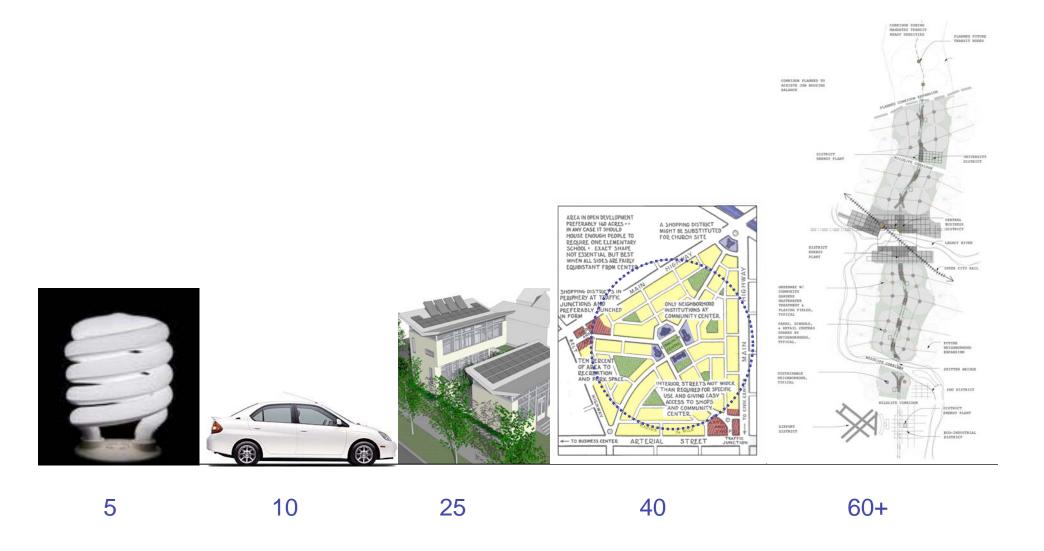
The Sustainable Corridor

Meeting weekly needs using foot, bike and transit

Minimum Transit Corridor Densities

Mode	Service	Residential Density (dwelling units per acre)	Remarks		
Dial-a-bus	Many origins to many destinations	6	Only if labor costs are not more than twice those of taxis		
Dial-a-bus	Fixed destination or subscription service	3.5 to 5	Lower figure if labor costs twice those of taxis; higher if thrice those of taxis		
Local bus	"Minimum," ½ mile route spacing, 20 buses per day	4	Average, varies as a		
Local bus	"Intermediate," ½ mile route spacing, 40 buses per day	7	function of downtown size and distance from residential area to		
Local bus	"Frequent," ½ mile route spacing, 120 buses per day	15	downtown		
Express bus -reached on foot	Five buses during two hour peak period	15 Average density over two square mile tributary area	From 10 to 15 miles away to largest down- towns only		
Express bus —reached by auto	Five to ten buses during two hour peak period	3 Average density over 20 square mile tributary area	From 10 to 20 miles away to downtowns larger than 20 million square feet of non- residential floorspace		
Light rail	Five minute headways or better during peak hour.	9 Average density for a corridor of 25 to 100 square miles	To downtowns of 20 to 50 million square feet of nonresidential floorspace		
Rapid transit	Five minute headways or better during peak hour.	12 Average density for a corridor of 100 to 150 square miles	To downtowns larger than 50 million square feet of nonresidential floorspace		
Commuter rail	Twenty trains a day	1 to 2	Only to largest down- towns, if rail line exists		

Source: Regional Plan Association



Emerging Thresholds of Sustainable Urbanism

Transit Technology

Technology	Heavy Rail	Commuter Rail	Light Rail	Modern Streetcar	Heritage Streetcar	Bus Rapid Transit	Express Bus
Example Cities	Washington DC New York Subway Chicago	Boston Chicago San Francisco	Denver Portland Minneapolis	Portland Tacoma Seattle	New Orleans San Francisco Kenosha	Los Angeles Pittsburg Eugene	Most Cities Served by Bus Systems
Approximate Cost Per Mile (Millions)	\$50-\$250	\$3-\$25	\$20-\$60	\$10-\$25	\$2-\$12	\$4-\$50	\$1-\$2
Service Type	Regional/Urban	Regional/ Interurban	Regional/ Urban	Urban Circulator	Urban Circulator	Regional/Urban	Regional/Urban
Station Spacing/Type (Miles)	Urban Core <1 Periphery 1-5 Station/Platform	2-5 Station/Platform	.25-2 Sidewalk Sign/ Station/Platform	.25 Sidewalk Sign/ Platform	.25 Sidewalk Sign/ Platform	.25-2 Sidewalk Sign/ Station/Platform	Limited Stops Along Normal Bus Routes
Peak Service Frequency (Minutes)	5-10	20-30	5-30	8-15	8-15	3-30	10-30
Operating Speed (MPH)	30-80	30-60	20-60	8-12	8-12	8-12	30-80
Alignment/ROW Width	Separate ROW 25-33 Feet	Existing Freight ROW/ 37+ Feet	Street Running or Separate ROW/11-33 Feet	Street Running 11-24 Feet	Street Running 11-24 Feet	HOV or Separated Median/28 Feet	Street Running
Typical Power Source	Electric	Diesel/Hybrid	Electric	Electric	Electric	Diesel/Hybrid	Diesel/Hybrid
Photos							

Thank you

JOIN THE NATURAL EVOLUTION

1969

Designer with Nature

1993

New Urbanist

1993

Green Builder

1996

Smart Growther

NOW!

Sustainable Urbanist

SUSTAINABLE URBANISM URBAN DESIGN WITH NATURE

DOUG FARR, JOHN WILEY & SONS, FARRSIDE.COM