Local Street Networks and the Future of Claiborne Avenue

Eric Dumbaugh, Ph.D.

Associate Professor School of Urban and Regional Planning Florida Atlantic University

Outline

- Arguments Against Restoring Claiborne
 - Argument 1: Eliminating the freeway will create traffic congestion and hurt the local economy.
 - Argument 2: Eliminating the elevated roadway will create gridlock on a surface boulevard.
 - Argument 3: Traffic fatalities will skyrocket as displaced traffic from Claiborne floods local streets.

Restoring Claiborne Avenue

Alternatives for the Future of Claiborne Avenue

A Report to the Claiborne Corridor Improvement Coalition and Congress for the New Urbanism

Prepared by Smart Mobility Inc. and Waggonner & Ball Architects

15 July 2010

http://www.cnu.org/restoringclaiborne

New Orleans Claiborne Avenue Redevelopment Study

A University of New Orleans Analysis of Best Practices and Public Opinion

MURP 4062: Applied Techniques for Transportation Planning, Spring 2011

August 2011

Professor John Renne, Ph.D., AICP | Alena Anderson | Emilie Bahr | Peter Bennett | Timothy Brathwaite | Luis Caberera | Casey Chimento | Christopher Clark | Jennifer Clark | Jennifer Dhir | Lachea Deamicis | Jonathan Dodson | Morgan Ford | Nicolette Jones | Taylor Marcantel | Mariana Marmol | Sophie O'Neili | Robert Pamplin | Marc Santos | Carl Selfert | Vivek Shah | Tara Tolford | Max Williamson

http://transportation.uno.edu/phirecontent/assets/files/Claiborne%20Avenue%20 Redevelopment%20Study.pdf

Assertion 1:

Eliminating the freeway will create traffic congestion and hurt the local economy.

In Depth: America's Most Congested Cities

Read the full story Matthew Woolsey

E-mail Create Alerts

2. Washington, D.C.

(Washington-Arlington-Alexandria) Annual delay per traveler: 62 hours Excess fuel consumed by metro commuters: 90,801 gallons Read on for more lists and rankings, including the world's most expensive cities to live and America's fastestfalling neighborhoods.

© AP Photo/Jacquelyn Martin

Methodology: Rankings were determined using data from the Texas Transportation Institute (TTI), which calculates delay ratings through the use of U.S. Department of Transportation, and individual states' transportation department traffic data for 429 metropolitan statistical areas (geographic entities defined by the U.S. Office of Management and Budget). The TTI uses this information to calculate the additional amount of time travelers spend on the road, as the result of congestion, per year. If a commuter should spend 250 hours a year commuting, without traffic, but spends 300 hours a year commuting, TTI would assess the annual delay due to congestion at 50 hours. The more hours lost to traffic, the worse a city's congestion.

Does congestion hurt the economy?

Metropolitan Gross Domestic Product

Variable	Beta	t	Sig.
Delay Per Capita	0.701	10.165	.000
% Drive-alone Trips	- 0.227	-3.287	.001

 For every 10% increase in vehicle delay...

 …a region's GDP <u>increases</u> by 7%

R2 = 0.663 N = 88

Traffic congestion is a by-product of a vibrant economy.

Julius Caesar

US Teardowns

- Chattanooga
 - Riverfront Parkway
- Milwaukee
 - Park East Freeway
- New York
 - Westside Highway
- Oakland
 - Cypress Freeway
- Portland
 - Harbor Drive Freeway
- San Francisco:
 - Central Freeway
 - Embarcadero Freeway

Riverfront Parkway, Chattanooga

Central Freeway, San Francisco

Example 1: Chattanooga Riverfront Parkway

Example 1: Chattanooga Riverfront Parkway

Solution: Taking Lanes?

The problem is not flow, but distribution

Solution: Diffuse Traffic into Grid

Lesson Learned:

Connected street networks move traffic efficiently by distributing it over larger areas.

Sparse Hierarchy

Dense Network

Example 2: San Francisco's Central Freeway

Chussials File Diseas

Plan to Close S.F. Central Freeway Worries Neighbors / A few think of moving away -- merchants scared

February 26, 1996 | By Catherine Bowman, Chronicle Staff Writer

For residents who live and work in the shadow of the Central Freeway, plans to close the structure for seismic repairs mean one thing: a giant, lasting headache.

The state Department of Transportation wants to shut down the freeway from midsummer until December to tear down the upper deck. Caltrans also wants to make improvements to the lower deck and do other work as well, meaning neighbors could face up to two years of noise and congestion.

Residents throughout the city are concerned about the ripple effect of closing the heavily-used freeway -including the Fell Street off-ramp -- and wonder just how much longer it will take them to get around the inevitable street closures and other tie-ups. The freeway runs from the junction of Highway 101 and Interstate 80 to Fell Street and carries 76,000 vehicles each day.

What happened?

PAGE ONE -- Traffic Planners Baffled by Success No Central Freeway, no gridlock -- and no explanation

Carl Nolte, Chronicle Staff Writer Friday, September 13, 1996

PRINT 🖂 E-MAIL 🖉 SHARE 🗔 COMMENTS (0)

FONT | SIZE: - +

MORE NEWS

- Democrats grab momentum on volatile GOP contest 11.27.11
- Assemblywoman Mary Hayashi on Neiman Marcus radar 11.27.11
- Rick Welts: Honesty best defense for Warriors exec 11.27.11

Traffic experts appear to have produced a minor urban miracle: the closure of much of San Francisco's Central Freeway without major traffic problems. But they have no idea how they did it.

0

와 Tweet

0

f share

0

+1

``We have a success on our hands," said Jeff

Weiss of Caltrans, the agency that had predicted traffic chaos once the half-mile stretch of freeway was shut down on August 25.

Caltrans and other traffic agencies made it sound as if San Francisco would stop cold without the freeway. The media relayed the message in grim scenarios of gridlock just around the corner, traffic jams of historic proportions. It would be ``serious," said Caltrans director James Van Loben Sels. It would be ``horrendous," said state senator Quentin Kopp, independent-San Francisco.

Only one thing was clear from the freeway closure: There were no traffic jams.

No one knows exactly why. The experts have a number of explanations. One is that

Traffic Effects: - 76,000 Before

- 44,489 After

What About Traffic on Claiborne?

I-10/Claiborne in National Context

I-10 Claiborne in Regional Context

Distribution of Traffic

Eastbound Travel Patterns on the Claiborne I-10 Corridor

I-10 Claiborne in Regional Context

Daily Traffic Volumes in New Orleans, 2004 and 2008

Source: Louisiana Department of Transportation and Development

What would happen if Claiborne was converted to a 7-lane surface boulevard?

ARTPLAN 2009: I	arge Urba	nized	Area -	[Print Previe	ew]					_	1			1		Ľ		
<u>F</u> ile <u>V</u> iew <u>H</u> e	lp																	
) 💕 🖬 🎒 🕰	🥘 T7F							C:\Users\e	edumbaug	g\Docu	ments\1	_Presenta	ations a	and Talks	s\New Orlea	ans T	eardown\C	
							Arte	rial D	ata									
к				0.09	7 PHF					0	.925 Co	ontrol Ty	pe			Se	miactuated	
D				0.5	5 % He	avy Vehi	cles				2 Ba	Base Sat. Flow Rate				1		
	Cycle	Thru a/C	Arr. Type		nobil % Left	e Inte % Right Turns	Left Turn	tion a # Left Turn	nd Se	gme Left g/C	nt D Right Turn Lanes	ata _{Length}	AADT	Hourly Vol.	SEG # Dir.Lanes	FFS	Median Type	
Segment #	Length	37 -		DIF.Lanes	Turns	101113	Lanco	Lanes	Length		Lancs							
Segment # 1 (to Canal)	120	0.42	3	JIF.Lanes	12	12	Yes	1	Length 425	0.18	No	1636	51309	2737	3	60	Restrictive	
Segment # 1 (to Canal) 2 (to Orleans)	120 120	0.42 0.42	3	3 3	12 12	12 12	Yes	1	425 425	0.18	No No	1636 2376	51309 51309	2737 2737	3	60 60	Restrictive Restrictive	
Segment # 1 (to Canal) 2 (to Orleans) 3 (to Esplanade)	120 120 120	0.42 0.42 0.42	3 4 4	3 3 3	12 12 12 12	12 12 12	Yes Yes Yes	1 1 1	425 425 400	0.18 0.18 0.18	No No No	1636 2376 2376	51309 51309 51309	2737 2737 2737	3 3 3	60 60 60	Restrictive Restrictive Restrictive	
Segment # 1 (to Canal) 2 (to Orleans) 3 (to Esplanade) 4 (to St. Bernard)	120 120 120 120	0.42 0.42 0.42 0.42	3 4 4 4	3 3 3 3 3 3	12 12 12 12 12	12 12 12 12	Yes Yes Yes Yes	1 1 1 1	425 425 400 375	0.18 0.18 0.18 0.18	No No No	1636 2376 2376 1584	51309 51309 51309 51309	2737 2737 2737 2737 2737	3 3 3 3	60 60 60 60	Restrictive Restrictive Restrictive Restrictive	
Segment # 1 (to Canal) 2 (to Orleans) 3 (to Esplanade) 4 (to St. Bernard) 5 (to Elysian Fields)	120 120 120 120 120 120	0.42 0.42 0.42 0.42 0.42 0.42	3 4 4 4 3	3 3 3 3 3 3 3 3	12 12 12 12 12 12	12 12 12 12 12 12	Yes Yes Yes Yes Yes	1 1 1 1 1	425 425 400 375 375	0.18 0.18 0.18 0.18 0.18	No No No No	1636 2376 2376 1584 3696	51309 51309 51309 51309 51309	2737 2737 2737 2737 2737 2737	3 3 3 3 3 3	60 60 60 60	Restrictive Restrictive Restrictive Restrictive Restrictive	

Segm	ent #		Flow R	/mt ate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approa LOS	ach	Queue	e Ratio	Speed (mph)	Segment LOS
1 (to Canal)				2604	6070	1.021	46.86		D		0.82	16.03	C
2 (to Orleans)				2604	6070	1.021	42.43		D		0.82	21.84	C
3 (to Esplanade)			2604	6070	1.021	42.43		D		0.87	21.84	C
4 (to St. Bernar	·d)			2604	6070	1.021	42.43		D		0.93	16.74	٢
5 (to Elysian Fie	elds)			2604	6070	1.021	46.86		D		0.93	26.60	E
Arterial Length	2.2098	Weig	jhted g/C	0.42	FFS Delay	244.60) Thresho Delay	ld 0.00	Auto	Speed	21.09	Auto LOS	С
< Properties	Interse	ection	Segment	(Auto)	Segment (MM)	Ped Sub	Segment	OS Results (Aut	o) LOS	Results (MM) Serv	ice Volumes	>>

Travel Times along Claiborne during Rush Hour

- 60 MPH: 2.2 minutes.
- 35 MPH: 3.7 minutes.
- 21 MPH: 6.25 minutes.

Network Redundancy

Daily Traffic Volumes in New Orleans, 2004 and 2008

Source: Louisiana Department of Transportation and Development

What happens if traffic volumes decrease by 50%, like in most cities?

ARTPLAN 2009: Large Urbanized	d Area - [Print Preview]										
<u>F</u> ile <u>V</u> iew <u>H</u> elp											
: 🗋 💕 📕 🆪 🔍 🧶 Tre		C:\Users\edumbaug\Documen	ts\1_Presentations and Talks\New Or	leans Teardown\Claibo							
Arterial Data											
К	0.097 PHF	0.925	Control Type	Semiactuated							
D	0.55 % Heavy Vehicles	2	Base Sat. Flow Rate	1950							
Cycle Thru	Automobile Intersec	tion and Segment	Data ht n Length AADT Hourly #	FFS Median							

Segment #	Length	g/C	Туре	# Dir.Lanes	Left Turns	Right Turns	Turn Lanes	Turn Lanes	Storage Length	g/C	Turn Lanes	Length	AADT	Vol.	# Dir.Lanes	FFS	Туре
1 (to Canal)	120	0.42	3	4	12	12	Yes	1	425	0.18	No	1636	25655	1369	3	60	Restrictive
2 (to Orleans)	120	0.42	4	4	12	12	Yes	1	425	0.18	No	2376	25655	1369	3	60	Restrictive
3 (to Esplanade)	120	0.42	4	3	12	12	Yes	1	400	0.18	No	2376	25655	1369	3	60	Restrictive
4 (to St. Bernard)	120	0.42	4	3	12	12	Yes	1	375	0.18	No	1584	25655	1369	3	60	Restrictive
5 (to Elysian Fields)	120	0.42	3	3	12	12	Yes	1	375	0.18	No	3696	25655	1369	3	60	Restrictive

Automobile LOS

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approa LOS	ch	Queue Ratio	Speed (mph)	Segment LOS
1 (to Canal)	1302	7657	0.405	24.67		С	0.34	24.19	В
2 (to Orleans)	1302	7657	0.405	21.57		С	0.34	31.41	A
3 (to Esplanade)	1302	5794	0.535	23.50		С	0.36	30.28	Α
4 (to St. Bernard)	1302	5794	0.535	23.43		С	0.38	24.40	В
5 (to Elysian Fields)	1302	5794	0.535	26.74			0.20	24.05	٨
Arterial Length 2.2098 Wei	ghted g/C 0.42	FFS Delay	134.9	5 Thresho Delay	o.00	Auto S	Speed 29.74	Auto LOS	в

<--- Properties Intersection Segment (Auto) Segment (MM) Ped SubSegment LOS Results (Auto) LOS Results (MM) Service Volumes -->>

Hurricane Evacuation

Traffic fatalities will skyrocket as displaced traffic from Claiborne floods local streets.

Traffic Fatalities per 100 MVMT

	Interstate	Arterial	Collector	Local
Fatalities	6,743	17,157	8,464	7,810
VMT	960,088	1,241,260	426,175	402,299
Fatality Rate	0.70	1.38	1.99	1.94

Source: Federal Highway Administration

Fatal Crash Incidence on I-10 Claiborne

Las Olas Blvd, Fort Lauderdale, FL

Octavia Blvd. San Francisco, CA

The Performance of Livable Streets

Per vehicle mile traveled, livable streets report:

- The complete elimination of traffic fatalities.
- 40% fewer TOTAL crashes

Restoring Claiborne Avenue

Alternatives for the Future of Claiborne Avenue

A Report to the Claiborne Corridor Improvement Coalition and Congress for the New Urbanism

Prepared by Smart Mobility Inc. and Waggonner & Ball Architects

15 July 2010

<u>http://www.cnu.org/restoringclaibo</u> <u>rne</u>

New Orleans Claiborne Avenue Redevelopment Study

A University of New Orleans Analysis of Best Practices and Public Opinion

MURP 4062: Applied Techniques for Transportation Planning, Spring 2011

August 2011

Professor John Renne, Ph.D., AICP | Alena Anderson | Emilie Bahr | Peter Bennett | Timothy Brathwaite | Luis Caberea | Casey Chimento | Christopher Clark | Jennifer Clark | Jennifer Dhir | Lachea Deamicis | Jonathan Dodson | Morgan Ford | Nicolette Jones | Taylor Marcantel | Mariana Marmol | Sophie O'Neilil Robert Pamplin | Marc Santos | Cari Selfert | Vivek Shah | Tara Tolford | Max Williamson

http://transportation.uno.edu/phirecontent/assets/files/Claiborne%20Aven ue%20Redevelopment%20Study.pdf